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SUMMARY 
The purpose of this investigation is to study the convective heat transfer from a horizontal circular cylinder under 
the effect of a solid plane wall. The full Navier-Stokes and energy equations for two-dimensional steady flow are 
solved by a finite element method. The Variations in surface shear stress, local pressure and Nusselt number around 
the surface of the cylinder as well as the predicted values of average Nusselt number, location of separation and 
some flow and temperature fields are presented. It is found that the average Nusselt number and drag force increase 
as the gap between the cylinder and the wall is increased. 
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INTRODUCTION 

Heat transfer from a horizontal circular cylinder continues to be one of the important engineering 
problems. Many investigations'- have been carried out to study the combined forced and natural 
convection heat transfer from a circular cylinder, but the influence of a neighbouring solid wall on the 
heat transfer from the cylinder has rarely been considered. In engineering applications, most heat 
exchanger pipes do not exist alone and always experience a certain degree of influence from 
neighbouring bodies. The present paper investigates the effect of a neighbouring wall on the convective 
heat transfer from an isothermal cylinder in a viscous incompressible fluid. 

Flow past an obstacle under the effect of a solid wall has been analysed mostly by two approaches. 
One is based on the Stokes equations of motion. lo The other uses matched asymptotic expansions and 
treats the outer region as an ideal inviscid However, each method needs some additional 
assumptions and suffers from certain limitations. Many papers have focused attention primarily on the 
flow field and little attention is given to the heat transfer characteristics. In the present paper a Galerkin 
finite element method is employed to solve the 111 Navier-Stokes and energy equations. The effects of 
the plane wall as well as the Reynolds number and Grashof number on the heat transfer are of 
particular interest. 

PROBLEM STATEMENT 

Consider an incompressible viscous fluid of temperature T, streaming uniformly towards an infinite 
adiabatic plane wall behind an infinite isothermal cylinder of diameter D and temperature T,. The 
computation domain, boundary conditions and co-ordinate system of the flow field are shown in Figure 
I. Far away from the cylinder, zero gradient is assumed. 
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Owing to small changes in the temperature, all fluid property variations are ignored except for 
density in the buoyancy term in the momentum equation. The dimensionless governing equations can 
be written as follows: continuity equation 

momentum equations 

energy equation 
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Figure 1 .  Computation domain and boundary conditions 
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FINITE ELEMENT METHOD 

The calculated flow domain is discretized into 230-271 elements, determined by the size of the gap 
between the cylinder and the plane wall. All the elements are isoparametric quadrilateral containing 
eight nodes, one at each comer and one at the midpoint of each side. The method of mixed 
interpolation presented by Hood and Taylor13 is adopted with quadratic variations in velocity and 
temperature and linear variation in pressure within the element; that is, all eight nodes are associated 
with velocities and temperature but only the comer nodes with pressure in the same element. Thus 

where Nj is the shape function of velocities and temperature and M is the shape function of pressure. 
By employing the Galerkin weighted residual approach, equations (1H4) can be discretized as 
follows: continuity equation 

(6) 

momentum equations 

energy equation 

where I =  1,  2, 3, 4, i = 1,2 ,3 ,  . . . , 8 , j  = 1,2 ,3 ,  . . . ,8,  Ae=is the area of a single element, r2=is  
the boundary over which the normal gradient is specified and l-1 is the rest of the boundary excluding 
r 2 .  The assembled matrix equation is in the form 

A l  = B, (10) 

where the primitive variables for l are 
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The coefficients in the matrix A are 

a g = F /  1 Ae 

where 
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The coefficients in the matrix B are 

where 

NUMERICAL SOLUTION 

In the above formulation, all integrations are performed by using the Gauss-Legendre quadrature 
scheme. In the present work, 3 x 3 and 3 x 1 Gaussian integration sampling point schemes are used 
for the surface and line integrals respectively. The resultant non-linear matrix equations are solved by 
the frontal method presented by Ironsl4 and a Newton-Raphson iterative process is carried out to speed 
up the rate of convergence. The relaxation factor u=O.5 was employed to promote smooth 
convergence. The following convergence criterion was used for the computation: 

d"1 < 0 f 001, (14) 

where 4 represents V, Vor T and n is the iteration number. All computations were executed on a 
PC486. The programme converged in about 5500 CPU seconds. 
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CALCULATION OF PHYSICAL PARAMETERS 

Shear stress 

The shear stress is defined as 

167 

where U, = V:/U,, n = n*/D and aU,/an denotes the dimensionless gradient of tangential velocity 
in the direction no& to the cylinder surface. Thus the dimensionless shear stress is defined as 

Nusselt number 

From the energy balance at the cylinder surface one has 
1 

-K(V*T * n), = h(T, - T,) or - K ~ ( v 4  n), = h. 

The local Nusselt number can then be written as 

The average Nusselt number is defmed as 

RESULTS AND DISCUSSION 

It can be seen from the governing equations (1)-(4) that the heat transfer characteristics of a hot 
horizontal cylinder under the effect of a neighbouring solid plane wall depend on the Reynolds 
number, Prandtl number, Grashof number and the gap between the cylinder and the plane wall. In the 
present paper the fluid is assumed to be a gas with a Prandtl number of 0.7. 

It can be seen from Figure 2(a)-(c) that the local Nusselt number and dimensionless shear stress 
around the cylinder surface increase when the gap is increased but that the dimensionless pressure 
decreases. The influence of the neighbouring wall seems to reduce the velocity of the flow and force it 
to stream sidewards along the plane wall. The velocity reduction results in a decrease in the heat 
transfer rate and surface shear stress on the cylinder and thus there is a decrease in the local Nusselt 
number and drag force but an increase in the pressure on the cylinder. Also, the smaller the gap x l / D  
is, the stronger are the effects of the velocity deceleration. In addition, the local Nusselt number 
distribution presented in Figure 2(a) is seen to agree well with the result of Dennis and Chang.6 

The effect of the Reynolds number on the average Nusselt number in the forced convection situation 
is shown in Figure 3. It is clear that the greater Re is, the greater is Nu. The effects of the Reynolds 
number on the local Nusselt number, dimensionless shear stress and dimensionless pressure 
distributions around the cylinder are shown in Figure 4(a)-(c) respectively. It is seen that an increase in 
the Reynolds number tends to increase the local Nusselt number as well as the surface shear stress but 
tends to decrease the surface pressure. 
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Figure 2(a). Local Nusselt number distributions for Re= 100 and Gr= 0 
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Figure 2@). Dimensionless surface shear stress distributions for Re = 100 and Gr = 0 
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Figure 2(c). Dimensionless surface pressure distributions for Re= 100 and Gr= 0 

The parameter Gr/Re2 is found to have a great influence on the velocity and thermal fields. The 
variations in average Nusselt number for Re = 100 and different values of Gr are shown in Figure 5.  It 
is clear from this figure that Nu increases with an increase in Gr. Figure 6(a)-(c) show the variations in 
local Nusselt number, dimensionless surface shear stress and surface pressure respectively for 
Re = 100 and different values of Gr. It can be seen that an increase in Gr trends to increase the local 
Nusselt number and surface shear stress but to decrease the surface pressure significantly. 



CONVECTIVE HEAT TRANSFER FROM A CYLINDER 169 

Re 

Figure 3 .  Effect of Re on average Nusselt number for x1 / D  = 3 .O and Gr = 0 
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Figure 4(a). Local Nusselt number distributions for x1/D=3.0 and Gr=O 
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Figure 4@). Dimensionless surface shear stress distributions for x l / D  = 3.0 and Gr= 0 

The isotherms for different gap sizes are shown in Figure 7(a)-(d). It is clear from these figures that 
the isotherms near the front stagnation point are closer than those near the rear stagnation point. Closer 
isothermal lines indicate a higher temperature gradient and accordingly a higher heat transfer rate. The 
influence of the solid plane wall is also significant in the rear region and a higher heat transfer rate for 
the bigger-gap case is indicated. The isotherms at x , / D  = 3.0 for different values of Re are shown in 
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Figure 4(c). Dimensionless surface pressure distributions for x l / D  = 3.0 and Gr = 0 
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Figure 5. Effect of Gr on average Nusselt number for x , / D  = 3.0 and Re= 0 
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Figure 6(a). Local Nusselt number distributions for x l / D =  3.0 and Re= 100 
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Figure 6@). Dimensionless surface shear stress distributions for x l / D  = 3.0 and Re = 100 
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Figure 6(c). Dimensionless surface pressure distributions for x l / D  = 3.0 and Re = 100 
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Figure 7(a). Isotherms at x l / D =  1.0, Re= 100 and Gr=O 
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Figure 7@). Isotherms at x l / D =  1.5, Re= 100 and Gr=O 

Figure 7(c). Isotherms at x l / D =  2.0, Re = 100 and Gr = 0 

Figure 7(d). Isotherms at x 1 / D = 3 . 0 ,  Re= 100 and Gr=O 

Figure 8(a) and 8@). From these figures it is found that as Re increases, the isothermal lines get closer 
to the cylinder surface. The velocity fields and isotherms at x l / D  = 3.0 for different values of Gr/Re2 
are shown in Figure 9(a)--(c) and lO(a)-(c). It can be seen that as Gr increases, a significant 
acceleration of the flow velocity behind the cylinder occurs and the isothermal lines around the 
cylinder get closer and shift towards the plane wall. 

Table I gives a comparison of average Nusselt numbers for different extents of the physical domain. 
It is found that the location of the inflow boundary has a significant influence on the computational 
results. The main reason for the difference is the restrictive imposition of too rapid a deceleration, 
which is incompatible with the far-field condition being simulated. However, a far-field computation 
domain can hardly be achieved owing to the limitation of computation time. 
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Figure 8(a). Isotherms at xl/D = 3.0, Re = 10 and Gr = 0 

Figure 8@). Isotherms atxl/D=3.0, Re=80 and Gr=O 

Figure 9(a). Velocity field at xl/D= 3.0, Re= 100 and Gr= 5000 

Figure 9@). Velocity field at xl/D = 3.0, Re = 100 and Gr = 20,000 
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... . . . 

Figure 9(c). Velocity field at x , / D  = 3.0, Re = 100 and Gr = 40,000 

Figure lO(a). Isotherms at xl/D=3.0, Re= 100 and Gr=5000 

Figure lo@). Isotherms at xl /D=3.0 ,  Re=100 and Gr=20,000 

Figure IO(c). Isotherms at x1/D=3.0, R e =  100 and Gr=40,000 
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Table I. Comparison of average Nusselt numbers for 
different extents of physical domain (Re = 100; Gr = 0; 

Nelem, number of elements) 

Xl/D x2lD Y2lD Nelem Ri 
3.0 8.5 8.0 242 3.13533 
3 .O 13.5 8.0 293 3.0221 
3.0 8.5 12.5 266 3.1365 

CONCLUSIONS 

A finite element solution based on the fill Navier-Stokes and energy equations for an isothermal 
circular cylinder under the effect of a solid plane wall is obtained. Both forced convection and mixed 
convection are considered. The effects of Reynolds number, Grashof number and the neighbouring 
plane wall on the flow and heat transfer characteristics around the circular cylinder are discussed in 
detail. It is found that an increase in the parameter Gr/Re2 has an accelerating effect and the presence 
of a neighbouring plane wall has a decelerating effect on the flow around the cylinder. Accordingly, the 
heat transfer rate and drag force increase with increasing gap size and Grashof number. The velocity 
fields and isotherms for different cases are also presented to show details of the flow and heat transfer 
characteristics. All results are reasonable in a physical sense. 

APPENDIX: NOMENCLATURE 

global coefficient matrix 
element of global coefficient matrix 
natural boundary condition vector 
element of natural boundary condition vector 
element of coefficient matrix of single element 
specific heat at constant pressure 
diameter of cylinder 
Grashof number 
gravitational acceleration 
local heat transfer coefficient 
thermal conductivity 
shape function of four nodes 
shape function of eight nodes 
local Nusselt number 
average Nusselt number 
total element number 
normal vector of the boundary 
pressure 
dimensionless pressure, p*/pU& 
Peclet number, Pr Re 
Prandtl number, pC,/K 
Reynolds number, p UmDlp 
temperature 
temperature on cylinder surface 
freestream temperature 
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x- and y-component of velocity 
dimensionless x- and y-component of velocity 
x-velocity component of node j 
freestream velocity 
y-velocity component of node j 
transverse axis of Cartesian co-ordinate 
distance between centre of cylinder and wall 
x- and y-co-ordinate 
dimensionless x- and y-co-ordinate 
Cartesian co-ordinate 

Greek letters 

coefficient of volumetric thermal expansion 
boundary of flow domain 
boundary with fixed value boundary condition 
boundary with natural boundary condition 
plane angle 
primitive variable vector 
dynamic viscosity 
kinematic viscosity 
density of fluid 
surface shear stress 
dimensionless surface shear stress 
dimensionless temperature, (T* - Tm)/(Tw - Tm) 
temperature of node j 
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